9 research outputs found

    Seed dispersal by macaws shapes the landscape of an Amazonian ecosystem

    Get PDF
    Seed dispersal is one of the most studied plant–animal mutualisms. It has been proposed that the dispersal of many large-seeded plants from Neotropical forests was primarily conducted by extinct megafauna, and currently by livestock. Parrots can transport large fruits using their beaks, but have been overlooked as seed dispersers. We demonstrate that three macaws (Ara ararauna, A. glaucogularis and A. severus) are the main dispersers of the large-seeded motacú palm Attalea princeps, which is the biomass-dominant tree in the Bolivian Amazonian savannas. Macaws dispersed fruits at high rates (75– 100% of fruits) to distant (up to 1200 m) perching trees, where they consumed the pulp and discarded entire seeds, contributing to forest regeneration and connectivity between distant forests islands. The spatial distribution of immature palms was positively associated to the proximity to macaws’ perching trees and negatively to the proximity to cattle paths. The disperser role of livestock, presumably a substitute for extinct megafauna, had little effect due to soil compaction, trampling and herbivory. Our results underscore the importance of macaws as legitimate, primary dispersers of large-seeded plants at long distances and, specifically, their key role in shaping the landscape structure and functioning of this Amazonian biomePeer reviewe

    Endangered plant-parrot mutualisms: seed tolerance to predation makes parrots pervasive dispersers of the Parana pine

    Get PDF
    Parrots are largely considered plant antagonists as they usually destroy the seeds they feed on. However, there is evidence that parrots may also act as seed dispersers. We evaluated the dual role of parrots as predators and dispersers of the Critically Endangered Parana pine (Araucaria angustifolia). Eight of nine parrot species predated seeds from 48% of 526 Parana pines surveyed. Observations of the commonest parrot indicated that 22.5% of the picked seeds were dispersed by carrying them in their beaks. Another five parrot species dispersed seeds, at an estimated average distance of c. 250 m. Dispersal distances did not differ from those observed in jays, considered the main avian dispersers. Contrary to jays, parrots often dropped partially eaten seeds. Most of these seeds were handled by parrots, and the proportion of partially eaten seeds that germinated was higher than that of undamaged seeds. This may be explained by a predator satiation effect, suggesting that the large seeds of the Parana pine evolved to attract consumers for dispersal. This represents a thus far overlooked key plant-parrot mutualism, in which both components are threatened with extinction. The interaction is becoming locally extinct long before the global extinction of the species involvedPeer reviewe

    Roadside Car Surveys: Methodological Constraints and Solutions for Estimating Parrot Abundances across the World

    Get PDF
    Parrots stand out among birds because of their poor conservation status and the lack of available information on their population sizes and trends. Estimating parrot abundance is complicated by the high mobility, gregariousness, patchy distributions, and rarity of many species. Roadside car surveys can be useful to cover large areas and increase the probability of detecting spatially aggregated species or those occurring at very low densities. However, such surveys may be biased due to their inability to handle differences in detectability among species and habitats. We conducted 98 roadside surveys, covering > 57,000 km across 20 countries and the main world biomes, recording ca. 120,000 parrots from 137 species. We found that larger and more gregarious species are more easily visually detected and at greater distances, with variations among biomes. However, raw estimates of relative parrot abundances (individuals/km) were strongly correlated (r = 0.86–0.93) with parrot densities (individuals/km2) estimated through distance sampling (DS) models, showing that variability in abundances among species (>40 orders of magnitude) overcomes any potential detectability bias. While both methods provide similar results, DS cannot be used to study parrot communities or monitor the population trends of all parrot species as it requires a minimum of encounters that are not reached for most species (64% in our case), mainly the rarest and more threatened. However, DS may be the most suitable choice for some species-specific studies of common species. We summarize the strengths and weaknesses of both methods to guide researchers in choosing the best–fitting option for their particular research hypotheses, characteristics of the species studied, and logistical constraints.This research was funded by Fundación Biodiversidad (Spanish Ministerio de Medio Ambiente, project 52I.CA2109), Fundación Repsol, Spanish Ministerio de Ciencia e Innovación (Project CGL2015-71378-P), and mostly by Loro Parque Fundación (Project SEJI/2018/024).Peer reviewe

    Revisiting methods for estimating parrot abundance and population size

    No full text
    Estimating abundance and population size is essential for many ecological and conservation studies of parrots. Achieving these goals requires methods that yield reliable estimates, but parrot traits can make them difficult to detect, count, and capture. We review established and emergent sampling and analytical methods used to estimate parrot abundance and population size, focusing on their assumptions, requirements, and limitations. Roost surveys are cost-effective if all roost locations in a region are known and stable, which is uncommon. Capture¿recapture methods incorporate detection probability, but capturing, marking and resighting parrots can be difficult. Distance sampling estimates detection probability and surveys multiple species simultaneously, but is sensitive to the spatial distribution of individuals and excludes birds in flight. Roadside transects can cover large areas and survey multiple species, but habitats near roads may differ from the surrounding areas, biasing abundance estimates. Occupancy surveys and hierarchical models usually require spatially and temporally replicated datasets. Both allow estimation of detection probability; the former dispenses with count data, while the latter is a versatile set of methods that can incorporate multiple processes influencing detection and abundance. Finally, passive acoustic surveys can sample multiple species simultaneously, but identification of vocalisations can be difficult and time-consuming.F.V.D. was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil (206107/2014-5). S.R.B. was supported as a Fellow at the Wissenschaftskolleg zu Berlin and by NSF grant IOS-1558145. Funding to J.L.T. to study parrot populations was provided mostly by Fundación Repsol and Fundación Biodiversidad

    Seed dispersal by macaws shapes the landscape of an Amazonian ecosystem

    Get PDF
    Seed dispersal is one of the most studied plant–animal mutualisms. It has been proposed that the dispersal of many large-seeded plants from Neotropical forests was primarily conducted by extinct megafauna, and currently by livestock. Parrots can transport large fruits using their beaks, but have been overlooked as seed dispersers. We demonstrate that three macaws (Ara ararauna, A. glaucogularis and A. severus) are the main dispersers of the large-seeded motacú palm Attalea princeps, which is the biomass-dominant tree in the Bolivian Amazonian savannas. Macaws dispersed fruits at high rates (75– 100% of fruits) to distant (up to 1200 m) perching trees, where they consumed the pulp and discarded entire seeds, contributing to forest regeneration and connectivity between distant forests islands. The spatial distribution of immature palms was positively associated to the proximity to macaws’ perching trees and negatively to the proximity to cattle paths. The disperser role of livestock, presumably a substitute for extinct megafauna, had little effect due to soil compaction, trampling and herbivory. Our results underscore the importance of macaws as legitimate, primary dispersers of large-seeded plants at long distances and, specifically, their key role in shaping the landscape structure and functioning of this Amazonian biomePeer reviewe

    Estimating adult sex ratios in nature

    No full text
    Adult sex ratio (ASR, the proportion of males in the adult population) is a central concept in population and evolutionary biology, and is also emerging as a major factor influencing mate choice, pair bonding and parental cooperation in both human and non-human societies. However, estimating ASR is fraught with difficulties stemming from the effects of spatial and temporal variation in the numbers of males and females, and detection/capture probabilities that differ between the sexes. Here, we critically evaluate methods for estimating ASR in wild animal populations, reviewing how recent statistical advances can be applied to handle some of these challenges. We review methods that directly account for detection differences between the sexes using counts of unmarked individuals (observed, trapped or killed) and counts of marked individuals using mark–recapture models. We review a third class of methods that do not directly sample the number of males and females, but instead estimate the sex ratio indirectly using relationships that emerge from demographic measures, such as survival, age structure, reproduction and assumed dynamics. We recommend that detection-based methods be used for estimating ASR in most situations, and point out that studies are needed that compare different ASR estimation methods and control for sex differences in dispersal. This article is part of the themed issue ‘Adult sex ratios and reproductive decisions: a critical re-examination of sex differences in human and animal societies’.S.A. was supported by CONACYT (Mexico). T.S. was supported by Hungarian Science Foundation (NKFIH-K116310). T.S. and S.R.B. were supported as Fellows at the Wissenschaftskolleg zu Berlin during the production of this contribution

    Combined impacts of multiple non-native mammals on two life stages of a critically endangered Neotropical tree

    No full text
    Despite of the widespread co-occurrence of multiple invaders, little is known on their combined ecological impacts and on their effects on different life stages of native species. We assessed the joint impacts of four non-native mammals (cattle, horse, European hare Lepus europaeus, and wild boar Sus scrofa) on seed surplus and seedling abundance of the Paraná pine (Araucaria angustifolia), a critically-endangered species of the Atlantic Forest. We found that its seeds constitute an autumn food resource for a native community richer than previously thought, with 70 bird and mammal species as confirmed or potential seed consumers, of which 40 were not previously recognized as such. We also recorded the number of uneaten seeds and seedlings at the middle-end of autumn under 520 female Paraná pine trees across the species’ distribution and identified signs of the species consuming seeds from each tree through direct observations combined with camera trapping. Most of the sampled trees (98%) were visited by at least one seed consumer species, and over 60% were visited by at least one non-native mammal. Seed surplus strongly declined in the presence of cattle, horses and wild boars, their impacts being additive, whereas the number of seedlings declined in the presence of European hares. Our results emphasize the importance of Paraná pine seeds for native fauna and the additive impact of invaders in a species-rich ecosystem. Seed predation by non-native species reduces the potential regeneration of Paraná pine forests, and may severely reduce food supply for its native consumers.Funds were provided by Fundación Repsol. F.V.D. was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (206107/2014-5). N.P. and J.M. thank the Fundação Grupo Boticário de Proteção à Natureza for financial support of long-term work on parrots in southern Brazil

    The extent, frequency and ecological functions of food wasting by parrots

    No full text
    Anecdotic citations of food wasting have been described for parrots, but we lack a comprehensive knowledge about the extent of this behaviour, and its ecological and evolutionary implications. Here, we combine experimental and observational approaches to evaluate the spatial, temporal, typological and taxonomic extent of food wasting by parrots, to identify the ecological and evolutionary factors driving food wasting, and to assess the incidence of two ecological functions derived from food wasting, such as food facilitation to other animal species and secondary seed dispersal. We found that food wasting is a widespread behaviour found in all the studied parrot species. However, the proportion of food wasted differed among species and throughout the year. Parrots wasted more food during the non-breeding season, when they relied on exotic plants and on unripe fruits or seeds. We also recorded 86 animal species feeding on the food wasted by parrots, 27 of which potentially acted as secondary seed dispersers. Overall, our study emphasizes the universality of food wasting among parrots, and the important implications that this behaviour may have for the species involved (i.e., the parrot, the plant, the other species feeding on wasted food), and for the functioning of the whole ecosystemPeer reviewe

    Clustering of multiple lifestyle behaviors and health-related fitness in European adolescents

    No full text
    corecore